
What’s new in this Dplug “Winter”?

- Not much this month. Updated roadmap 2024 =>
https://github.com/AuburnSounds/Dplug/wiki/Roadmap (be patient)

- Two tools exist that can build plug-ins MUCH faster: reggae and redub
https://code.dlang.org/packages/redub

- #dlang activity in UI library department: libsoba and Fluid.

- FL Studio is adopting CLAP just after we adopt FLP format

😭 => my 400IQ strategy falls apart😭

https://github.com/AuburnSounds/Dplug/wiki/Roadmap
https://code.dlang.org/packages/redub
https://github.com/Inochi2D/libsoba

Audio Optimization Idioms
you might find useful

Meeting
Apr 2nd 2024

Nowadays performance is

We will see
4 dangerous optimizations:

1. The “Remainder Loop”
2. The “Padded Buffer”
3. The “Merged Allocation”
4. The “Fixed Allocation”

Increasing
thrill

The “Remainder Loop”
say we have this unoptimized loop:

We want to go SIMD, but nothing is a multiple of 4 (4 float = 16 byte = NEON and SSE alignment)

After
optimization,
2 loops
instead of 1

Reminder loop
typically for 1 to 3
elements max

The “Remainder Loop”

Possibly, this one
run faster

The “Remainder Loop”

same body as before SIMD

tricky body

The “Remainder Loop”

- 9 times out of 10 you can upgrade regular code to
SIMD code using this simple transformation

- remember to benchmark
- bench against naive code, which is often best
- bench against Dlang Array Operations

The “Remainder Loop”

- 9 times out of 10 you can upgrade regular code to
SIMD code using this simple transformation

- remember to benchmark
- bench against naive code, which is often best
- bench against Dlang Array Operations

- More importantly: if you’re unsure about your
SIMD translation, just comment the fast loop to
check for diffs. Remainder body acts as
documentation.

The “Padded Buffer”
 Can we do this instead?

^No Reminder Loop needed!

*

The “Padded Buffer”

YES, IF 1. BUFFERS ARE PADDED
has extra
space
at the end

has extra
space
at the end

AND 2. WE CAN PROCESS
MEANINGLESS SAMPLES (STATELESS)

*

The “Padded Buffer”
 Wrapping it up:

^No Reminder Loop => smaller code size, no speed loss usually

1. Allocate one
extra sample(s)
if non-multiple

2. Process it and discard

Helpful because SIMD
cos/sin/tan/exp/pow/log
are usually same cost when parallel like this,
and will inline only once.

*

The “Padded Buffer”

- Simplify some SIMD loops by being multiple of 2, 4…
- Same speed as Reminder Loop and smaller code size

The “Padded Buffer”

- Simplify some SIMD loops by being multiple of 2, 4…
- Same speed as Reminder Loop and smaller code size
- doesn’t work for recursive DSP tasks
- error-prone
- padded area might be NaN, out of bounds etc…

Is
this
familiar?

…also don’t
forget to
reclaim LOL

_rms[0..maxFrames]

_peak[0..maxFrames]

_alpha[0..maxFrames]

_crest[0..maxFrames]

megabytes of memory

megabytes of memory

megabytes of memory

How do I know the
buffers are not in a
worst-case position?
far from each other
and in any order?

How to
speed-up
processing
AND
allocation?

IN AN IDEAL WORLD 🌞

Three methods:
1. Allocators

Three methods:
1. Allocators (but Dplug doesn’t have those)

Three methods:
1. Allocators (but Dplug doesn’t have those)

2. “Merged Allocation”

The “Merged Allocation”

_rms[0..maxFrames]

_peak[0..maxFrames]

_alpha[0..maxFrames]

_crest[0..maxFrames]

One single merged allocation

It’s a struct, so automatic reclaim on
~this

MUST NOT
initialize buffers here,
just says how much
memory you want

Place buffers after NULL

Place buffers after alloc

The “Merged Allocation”

 See also: https://p0nce.github.io/d-idioms/#The-merged-allocation-optimization

- Usually faster to process and allocate nearby
buffers

- Alignment control with padding bytes

- BUT Not always faster than malloc for processing,
often malloc has excellent locality

https://p0nce.github.io/d-idioms/#The-merged-allocation-optimization

Three methods:
1. Allocators (but Dplug doesn’t have those)

2. “Merged Allocation”
3. “Fixed Allocation”

- Why not use buffer-splitting?

- 1. Use the
maxFramesInProcess()
callback to limit the maximum
number
of frames you receive.

THEN

2. Use regular static arrays, as
stack variables or fields.

The “Fixed Allocation”

_rms[0..MAX_POSSIBLE_MAXFRAMES]

_peak[0..MAX_POSSIBLE_MAXFRAMES]

_alpha[0..MAX_POSSIBLE_MAXFRAMES]

_crest[0..MAX_POSSIBLE_MAXFRAMES]

Same allocation/place than owning objects, or the stack.

The “Fixed Allocation”
 - Zero allocation potentially, controllable layout.

- BUT Dangerous for space, because space might be
limited in a (unknown capacity) thread stack.

- Dangerous for locality: maxFrames might be even
smaller than specified, leading to wasted space.

- Even worse for locality: Large objects and T.init,
pessimized distance.

- Smaller buffer size usually lower performance below
128/256

 Three methods:
1. Allocators (but Dplug doesn’t have those)

2. “Merged Allocation”
3. “Fixed Allocation”

That said, malloc is a pretty good allocator.

Any nice idioms you want to
share?

